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The method of solution of the problem already discussed in [1 ] is re-
commended. This method does not require the construction of "conical
solutions". It allows one to solve other problems which reduce to a hyper-
bolic system of equations with boundary conditions on the moving bound-
aries.

1. Formulation of the problem. In an undisturbed gaseous medium
we assume the YZ plane to coincide with the surface of the piston; at
instant t = 0 the piston has started to move along the X axis at constant
velocity U; a shock wave travels through the gas at velocity D. In the
initial state the gas density is p;, the velocity of sound is ¢;, whilst
behind the wave-front they are p, c, respectively. We assume the gas to
be an ideal one with isentropic index y. The velocity of the wave with
respect to the piston is denoted by ¥V, so that D= U+ V. Introduce para-
meter & = l/Mo2 where M, = D/c,. We then have the known expressions

o=f____h oy D e VY _l+C=Dv o, t+!

pp 1+G—13 o ¢ (h+1)—3 y—1

Having obtained the undisturbed solution, we deal with the propaga-
tion of the shock wave from a slightly curved piston as a linear approxi-
mation. Without losing generality we may consider the piston surface to
be bent in one direction (only) and to be in the form ¢ (Y). We employ a
system of coordinates in which the piston is at rest. Within the region
0 < X < Vt we have the following linearised equations for the pressure
disturbance p” and the velocity components v~ and v *

Y
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o Tee (T v)=0 Tt =0% cay =0 (1)

Changes in density p” are eliminated by using the adiabatic condition
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The boundary condition at the wall will equate the normal velocity
component to zero, v * = 0, (for the linear approximation with X = 0).
In accordance with the second of the equations (1.1) we also have
dp’/9X = 0. The condition at the front of the shock wave is derived from
[21. Note that, for an ideal gas, the following is valid:

_]-2[56_ G)]H =s<1

Using the conventional notation we have

’ ’ 14+5% , 1—3% ,
w=—US%, w=F5p F=F7r wex-vi (12
The displacement of the wave-front from the plane X = Vt is denoted

by £(Y, t). To eliminate £(Y, ¢) from the boundary conditions we differ-
entiate the first of the equations (1.2) with respect to time:

dv,  ov) v’ a%
YV Y Y %5
de ot +v ox v Ayt
Using (1.1) and (1.2) we obtain
ov,’ 1 1—%\9p
v (1% X =Vt
Vox (p 7)oy "ben

The initial conditions come from the fact that the wave-front when
t = 0 coincides with the surface of the piston where v . = 0 always. In
accordance with (1.2) p’ = 0 when t = 0. The velocity component vy' at
the initial instant is not zero, but is given by vy’(O) =~ Ude/dY.

Let € (Y) = A exp (ikY), where A and k are both constant, and kA << 1
(small disturbance or displacement). The dependence of all quantities on
the coordinate Y is then expressed by the multiplier exp (ikY). Introduce
the following notations:

’

Plec=w, v = u, v, =—1iv
We also make the following transformation:
EX =z, ket =y
The problem then reduces to solving the system

dw | du du | ow ov

with boundary conditions
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=0, gi:=0-henx=o; uw=Aw, 2'=Buwhens=py B<1)  (1.4)
where
N 1
and initial conditions
u=w=0, v=0; whenz=y=0 (9= UkA) (1.5)

Note that that function w(x, y) satisfies the equation
*w P
e — T+ w=0 (1.6)
2. Solution of the boundary-value problem. Introduce the new
variables r and ¢ using the formulas

Y = rem, T =Tramg r== Vyz —z?, tanh § = —;— (2.1)

We multiply the first of Equations (1.3) by cosh 6 and add it to the
second multiplied by sinh 6; we then interchange the positions of cosh ¢
and sinh 6. This results, finally, in the system

ow 1 ou ou 1 ow

5’.—+?a—6+vemhﬂ=0, $+-r—56+27“1150=0
dvy  dvusimB

Tt —mamtw=0 2.3)
The line x = 0 corresponds to @ = 0, line x = 8y corresponds to
6 = 0, where tanh 6, = 8. In the third equation of the system (2.2) we
will put = 6, and to it we will add the product of dv/dx = Bw and
tanh 6,, which also holds along 6 = 6,. The origin of coordinates x =
y =0 is given by r = 0. As a result, the boundary conditions and the
initial conditions take the following form:

=0, =0, at 6=0 (2.4)
u= Aw, 2= (Bumbtomb)w at 0=0, (2.5)

u=w=10, v=1 at r=0 (2.6)
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Now let us make use of the Laplace transformation for the variable r
according to the formula

1h(p, O =\ ey, Odr
We then obtain 0

a
%(pwl) 8u1 +c heall 0 _a_(pul)__aa_%l-—l—-lnhea—-;l:O
con 5 (poy) - om Zt — T8 = 2.7)
2w, %
P+ )G+ 3p 2t w,— G =0 (2.8)
_ %z_ at 6=0
m=0, =0 (2.9)

uy = Awl, PUvy — Yy = (ane + cosh 90) wy at 0= 00

Besides it follows from the Laplace transformation theory that all
transformed functions should fulfili the condition

f1(p, )0 at Rep— + oo (2.10)
Make the substitution
p =emgq, wy (p, 0) = w; (g, 8)/cmnq

Then, instead of obtaining (2.8) for function w,(q, 6), we get

dtwy  Ows

¢t 9% =0

The general solution of this wave equation is of the form

wy(g,8) =F (g4 90)+ ®(q—0)

where F and ® are arbitrary functions. It is clear from (2.9) that
0w,/30 = 0 when 6 = 0, therefore ®(q) = F(q) and

wy (g, 9)=F(g+0)+ F(¢g—6) (2.11)
The second of Equations (2.7) can be written thus:
oo {(Pus— [F @+ 8)— F (g — 8)] +-wmbo,} = 0

From this we get
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puy —[F (g + 8) — F (g — 8)] +overbo; = o (6) (2.12)
where () is an arbitrary function. It is known [3 ] that

f(r=0)=f(0)=limpf,(p, 6) for p—oo

It follows, therefore, that

w(0) = lim pw,(p, 0) =0,  limamqw, (g, 8) = 2F (o) =0
P00 q->00
u (0) = lim pu; =0, lim pu; =0 (2.13)
p-roo

g—»00
In accordance with (2.10) we also have lim v; = 0 when p » « and
lim v; = 0 when g » . In Equation (2.12) we turn our attention to
Re g » . Then, the L.H.S. vanishes for any value of @, i.e. ¢(9) = 0
and
puy —[F (g +8) — F (g —0)] f-osmbp; =0

Here let us put 0 = 6,. Making use of (2.9) we find that F(q) satis-
fies the finite difference equation

oton 29 [F (g + B0) — F (g — 80)] — (@cosn2q + ) [F (g + 8,) -+ F (9 — By)] ==
= Zvosxnheamshq
where
1—3

a=A=1T8< b= 2umbly (Bumly + omby) — A =122 (2.44)

It is known [4 ] that the general solution of a non-homogeneous linear
finite difference equation is the sum of the general solution of the
homogeneous equation plus a particular solution of the equation includ-
ing its R.H.S. The general solution of the homogeneous equation is pro-
portionately a periodic function. In Equation (2.14) this period is 2 8.
The uniqueness of the solution of (2.14) is insured by the circumstance
that F(gq) > 0 when Re ¢ » = in accordance with (2.13). The homogeneous
equation corresponding to (2.14), for sufficiently high values of Re g,
takes the form

F(g+0) =—2E1F(g—8)

a—1

i.e. with increase in Re g function, F(g) grows indefinitely. Therefore,
condition (2.13) can only be satisfied if we equate the arbitrary
periodic multiplier to zero. The particular solution, which vanishes when
Be ¢ » o, takes the form of a series.
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F(q)= D) Apetnina (2.15)

n=0

Put this expression into (2.14). Equating coefficients of similar
powers, to evaluate the quantities B, = 24, cosh (2n + 1) 6, we arrive
at the expression

sinn O, N (a — 2b) }+ranh0,
0 a »}-hnheo ’ Bl - Bo a +tmh300 (2'16)

[a ——hnh(zn —1) 6,0 B, 4 2bB, -+ [a + tann( 20 -+ 3) 8,] By =0 (n=1,2,3,...)

Bo = _"211’

In accordance with (2.11) we have

(f\ cosh(2n 4+ 1)0 » p
w (g, 8) = 112—'—0 B"cosh(zz + 1))006 Gt a (2.17)

To demonstrate the convergence of the solution obtained, we examine
those values of n in Equation (2.16) for which 2n0,>> 1. Then instead
of (2.16) we get

(@— 1) Bn_y + 2bBy 1 (@ + 1) Bppy = 0 (2.18)

The solution of this difference equation with constant coefficients
has the form B, = p". The value of p can be found from the quadratic

(@+1)p*+20p+(a—1) =0 (2.19)

whose roots are negative and of absolute value less than unity. In

accordance with Poincare’s theorem [4] when Re q » 0 the following
series converges:

w, (g, Og) = D) Bne—ntDa (2.20)

n=y0

and, with it also, the series (2.17) for any values of 8 < §,.

Now, returning to the variable p, we bear in mind that if p = sinh q
then cosh g =V p?+ land e~ 9=y p2+ 1 — p; we have

o

N\ poeom@rt1)8 (VEET— p)P
w, (py 0) - %:0 Bnco.h(zn & 1) 00 V;;m

Using the known formula for representing Bessel functions [3 ]
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S VPri—p)"
0 e
we obtain W g com(2n + 1) 0
w (r, 0) = 2" Bﬂc”h(zn + 1) 00 "2"-"*‘1 (r) (2.21)
R=={}

Now, to return to the original variables X, c¢t, we use the formulas

X

2

cosh (2]’1 + 1) L - _%. [(1 + 1)21\'{'1 + (,1 . 1)2n+1] (1 . ’:2)._..(1;.{.1/2)

r=ketV1—1, T = (2.22)

The pressure at the front of the shock wave is given by the expansion
w(r, 0) = X Bulynys (5), s=het Y 1—3t (2.23)
n=0

Let us insert (2.23) into the second of Equations (2.5) and integrate:

2 (r, ) = 9 + (Brs B +-cont B5) ] Bng Jong1 (%) dz
n=0

1]

It is known that for any value of n the integral on the R.H.S. when
s » o equals mnity. Note also the relationship which is obtained from
(2.14) and (2,.20) when g = O:

o0
1 - 2vontnnfiy = Yo
wy (0, 8;) = Q = E)Bn = = — s, (2.24)

Bearing in mind that the quantities v(r, 6,) and £(s) are proportional
to each other we arrive at the following expression for the shock-wave
front:

s oo o

fe +]
v(r,0) _E() _, 1 =1
)£y Eansfwx(x)dx— 5 gan§1m+l<x)dx (2.25)

0

It can be seen from this that £(s) + 0 when s + o,

The latter result can be expressed in a form without integrals

2D —1y(5) — 5 2 Daans) (2.26)
Nz}
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where

D, — ri—b{[“ 1 tam (20 - 1) 8] By — [a — e (20 — 1) 8] Boy}  (2.27)

3. Certain limiting cases. To obtain asymptotic formulas for
r >> 1 we use the expression

J2n+l (7‘) ~ (—- 1)" '/ -;2—; [sin (r —_— i—‘n.') + é.(_z_n__%’.‘i)’_ﬂ coS (r — .:_ n)] (31)
and the relation

> (— )"Ba=0 (3.2)

which is obtained from (2.14) putting ¢ = 1/2i7 and a £ b.
Using (3.1) and (2.21) we obtain

w(r, 6)~V—s1n(r——“)2( 1)"B Z%+
+cos(r—/4ﬂ)2( Y B @A DO fop Ly 4] (3.3)

4 Vz 3 o mu(2n +1) 6,

At the shock-wave front, in view of (3.2), the first summation
vanishes, so that there remains

w(r, 8)~N 1%—:—:@“ (N = 4120(— 1)'n(n + 1) B,.) (3.4)

With a strong shock-wave (cq = 0 or U+ o) 8 = 0 and a = b. One of
the roots of Equation (2.19) becomes (- 1), so that the series (3.4)
diverges. We conclude from this that the asymptotic behaviour will differ
substantially, namely, decay will be slower. In this case Equation (2.14)
takes the form

sng [F (g4 8) — F (g—00)] —acomq [F (g + 8g) + F (g — 0,)] = voomb, (3.5)

As before, we look for a solution in the form of (2.15), and instead
of obtaining (2.16) for B, we have the expression

209s1nt0
By = — T‘LL‘T:O"O [a —tem(2n — 1) 0] By + [a 4-esm 20 1) 6] B, =0

(n=1,2,3,..) (3.6)

Convergence of the series (2.20) is obvious with such coefficients.
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Because Bn/Bn__ 1 < 0 for all values of n, in contradistinction to (3.2),
we get

iwy (-im, 8p) = D) (— 1)"Ba =2 M +0 (3.7)

n=0

With the help of (3.3), with 8 = 0 we arrive at the following formula:

_ sin (S'—' 1/4 7'5) 3 8
w (I‘, 90) - M m ( . )
Now we will obtain a formula which generalises (3.4) and (3.8) for

the case of small but finite values of §. Using integral representations
of Bessel functions

Yy in
Tenpa(r) == Tm[ | o= om0 0un(rung) dy]
0
instead of (2.23) we get

1z dm

w(r, B,) = —T%— Im[ S wy (g, Bo)stan(se1mrq) dq] (3.9)

0
Furthermore, from (2.14) it follows that

200‘
wa (g, B) atoh 29 1 aco:ZZq b {2s1ng F (g + 0p) — vgermny} (3.19)

It is evident that for ¢ » 1/2i7 and & » 0 the denominator of (3.10)
vanishes and the main contribution to integral (3.9) for s >> 1 is the
point ¢ = 1/2in, whilst the expression in the curly brackets in the last
formula can be replaced by its value for g = 1/2iz and & = 0,

2iF (~;- in 4 0y) — vgstonfy = i[F(;— in0,)—F (% in — 0y)] — vgeinnby 4
+i[F(%in+90)+F(—;—in——ﬁo)]:%M (3.11)

The first two bracketed terms vanish because of the relation
) [F (% in + 00) -_— F (-—;—ZTC _ 60)] == voslnheo

which follows from (3.5) for q = 1/2in. Note that in Formula (3.4) the
coefficient N will be equal to

N=iZ B,) wh i
i ——Zgé;ll)g(q, 0) when ¢ = 5-in

After double differentiation we have from Equation (3.10)
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N=— @—gﬁﬁ (for 3L 1) (3.12)

Thus, the series (3.5) diverges as 8~ 2. Using (3.9) and (3.10) we
find that for s >> land § «< 1
i,n
M sin (s sin @) cos ¢ sin 2¢
w(r, §) = — S (@ c0s 2¢ -+ b)*+ (sin 2¢)
0

Now, let us make the substitution sin ¢ = x. The main contribution in
the integral comes from the neighbourhood of point x = 1, and, there-
fore, on changing the lower limit of integration to — « where at all
possible we put x = 1

4V2 i sin(se) Vi—zdx

'W(r, BO)NM p (a_b)2+8(1__3:)

(3.13)

On putting @ = 1/8(h + 1)s8%, 1- x = 1/8(h + 1) 282, we arrive at
the required formula

w(r, 00) ~MVEFLY 1 yexp i (s — Loy

$(a) = exp(}in)g e—iaz :/;_df (3.14)

Note that function ¢la) can be represented thus:

— . Va
Y@ = Z[1—V raeie (e — % Ea )] (3.15)

If, in (3.13), the magnitude of s is fixed, and 6 » 0, then 2 » 0 and
Formula (3.13) transforms into (3.8). If & is small, but fixed, whilst
s » =, thena/ > ~and we arrive at (3.4) taking into account (3.12).

The asymptotic behaviour of the function A~ !¢ (s) is established by
substituting (3.4) and (3.8) in the second of Formulas (2.5):

§6) N 1 sin(s—YY,m)
A vo 2Betnndy Vma when =20
(

G M 1 cos (s — 1/, ®)
a 2VRRITY)  Vims

when 3 =0 (3.16)

Note that with a strong shock wave (§ = 0), in view of (3.6), Formula
(2.27) reduces to the form a, =[a + tanh (2n + 1) 8, ]B
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Formula (3.13) for s > 1 can be written thus

py

4V2 8 " cos {sx) Vi—zdx .
w(r, 8) ~— M7 asH (a_b)s+s(1_x)] (3.17)
In a similar mamner to (3.15) we find

—%ﬁ% Re {exp[i (s — + )] ¢ (2)}

w(r, §) ~ —

Substituting in (2.5) we arrive at the formula

e M 3 1 8
P~ — o Befexpli (s — + I () (3.18)
If we make use of the Frennel tabulated integrals
z z
S(z) = \ sint?dt,  C(z) = | cos e
0 o

we will write (3.18) in the form
g M1t
A Yo 2VR{EF1)Vins
+2V oS Vaycos(s+a— +x) —C (¥ a)sin(s +a— Lm]} (3.19)

{cos(s-——_i_r:)—m]/:?icos(s—{—a)—}-

Let us deal with the case of weak shock waves (§ » 1). Here tanh 6, =
B+ 1, so that 8, » =, From coefficients A, in (2.15) there only remams
Ay = - 1/2 v,. Then (2,21) yields

w(r, 9) E=d Z)OJI (r)eolhe

From this we obtain the following formula for the pressure disturb-
ance p’, in terms of its undisturbed value p:

’ h . JitkeaY1—n2 X
2o 204D (Mo—x)kAexp(zkY)W ((=Z%) 20

The behavior of £(s) when & + 1 is easily determined if we bear in
mind that Flg + 8,) » O when 6y » <. As a> 1, b~ 0, we find from (2.14)

Wy (q, 90) =~ F (q — 0) T 21’0 -mBﬂe*‘W cosh(y

therefore
wi(p, 8,) = — 20,mm b, (V P2 + 1 — p)?

and using the tables of the originals and the reflections, we find
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w ()‘, 00) = — lﬂ;onnneo .——-——J’r(r)

If we insert this into (2.5) for 6, >> 1 we find

8
LIPS WL 1 R 8,) = v, [1 —_ ZS —-J"x(z) d:c]
o

Making use of the well-known formulas

Ja(r) _ _ d [Ji(r) v s ()
R 1 i

r dr r

we finally arrive at

when 3 > 1

v(r 8 _E6) _ 57100
Yo A T s

and this coincides with the corresponding formula in [1].
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